Editing genomico: che cos'è e a cosa serve? Sarà la terapia del futuro?

L’editing genomico è una tecnologia altamente innovativa che funziona come un “correttore di bozze” del DNA: interviene in maniera precisa per trovare e correggere gli errori genetici all’interno dell’intero genoma. Molti considerano l’editing genomico come la terapia genica del futuro, visto che permetterebbe di correggere un gene difettoso direttamente là dove si trova senza doverne fornire una copia sana dall’esterno.

Una tecnica da Nobel: CRISPR

La vera rivoluzione in questo campo è arrivata nel 2012 con la scoperta del sistema Crispr-Cas9, che ha messo in secondo piano i sistemi di editing denominati nucleasi a dita zinco (zinc-finger nucleases), meganucleasi e TALEN che erano stati utilizzati fino ad allora dai ricercatori di tutto il mondo. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, espressione traducibile in italiano con brevi ripetizioni palindrome raggruppate e separate a intervalli regolari) ha dimostrato, fin da subito, una potenzialità e una versatilità fino a poco prima inimmaginabili: qualunque tipo di cellula vegetale, animale, inclusa quella umana, può essere modificata geneticamente e la correzione può avvenire anche per un singolo errore, e ovunque nel genoma. Inoltre, questa tecnica è facile da utilizzare, veloce ed economica, tutti fattori che contribuiscono ad ampliarne le potenzialità in ambito terapeutico. Una rivoluzione che ha premiato le sue scopritrici e autrici dell'ormai famoso studio pubblicato su Science nel 2012Emmanuelle Charpentier, Direttrice del Max Planck Unit for the Science of Pathogens a Berlino, e Jennifer A. Doudna, Professoressa all’University of California (Berkeley) - a vincere il Premio Nobel per la Chimica 2020 per lo “sviluppo di un metodo di editing genomico” basato su CRISPR.

CRISPR è l’acronimo di “Clustered Regularly Interspaced Short Palindromic Repeats”, ovvero sequenze geniche che si ripetono a intervalli regolari. A CRISPR sono associati i geni Cas ("CRISPR associated", da cui deriva "Crispr-Cas9") che codificano enzimi capaci di tagliare il DNA. Il DNA non viene tagliato in modo casuale, ma in un punto preciso grazie alla presenza di un RNA guida.

Questo sistema è stato originariamente scoperto nei batteri, nei quali agisce come arma di difesa contro i virus - un po' come il sistema immunitario umano - e funziona in maniera molto semplice ma con grande efficienza. Il sistema CRISPR si basa sulla combinazione di due elementi: un enzima Cas e un RNA guida che si appaia al DNA del virus per indicare a Cas il punto in cui tagliare. Come nel caso della terapia genica, anche la strategia di editing basata su CRISPR può essere somministrata in vivo (direttamente nell'organismo) o ex vivo (all'esterno, su cellule vive prelevate dell'organismo).

Ad oggi la ricerca nell’ambito dell’editing genomico spazia dalle malattie genetiche, in particolar modo quelle rare (come la distrofia muscolare di Duchenne, la beta-talassemia e la fibrosi cistica), ai tumori, passando per le malattie neurologiche (Alzheimer e Parkinson), fino alle malattie infettive (HIV). L’utilizzo di CRISPR è inoltre in studio nel campo degli xenotrapianti, in particolare degli organi suini, per la terapia di malattie umane.

Editing genomico per l'emofilia b

Correggere il DNA in maniera tale da fornire ai malati il fattore coagulante mancante. È questo l’obiettivo di uno studio clinico condotto negli Stati Uniti e nel Regno Unito

L’annuncio è stato diffuso il 17 dicembre da Sangamo Therapeutics, un’azienda statunitense focalizzata su tecnologie innovative nel campo della terapia genica, dell’editing genomico e della terapia cellulare. Il paziente trattato fa parte di uno studio clinico di fase I/II che ha l’obiettivo di valutare una terapia sperimentale di editing genomico in vivo, ovvero una correzione del DNA effettuata direttamente nell’organismo, su pazienti con emofilia B grave.

Editing genomico per la sindrome di Hunter

Uno studio clinco di Fase I-II valuta la sicurezza, la tollerabilità e l’efficacia di un nuovo farmaco che punta su une metodica precedente a CRISPR ma non per questo meno funzionale

Agli albori dell’editing genomico non c’è, come molti pensano, CRISPR ma c’è un metodo basato sulla combinazione di nucleasi e di proteine che riconoscono in maniera specifica e si legano in determinate zone della doppia elica di DNA. Si tratta delle ZFN o “nucleasi a dita di zinco”.

Editing genomico: come prolungare l’effetto di CRISPR nella distrofia di Duchenne

Alcuni ricercatori americani hanno trovato il modo per abbattere una barriera all’applicazione di CRISPR/Cas9 estendendone gli effetti a lungo termine senza avere effetti off-target. La ricerca è stata condotta in topi modello per la DMD

Le distrofie muscolari sono un campo di ricerca molto prolifico nel quale hanno profuso sforzi enormi i ricercatori di tanti Paesi, dagli Stati Uniti alla Francia fino all’Italia. Di questo gruppo di malattie, a catalizzare l’interesse e le energie di tanti scienziati nel mondo è soprattutto la distrofia muscolare di Duchenne (DMD), una patologia degenerativa progressiva causata da mutazioni nel gene della distrofina.

CRISPR in utero, possibile?

La tecnica potrebbe essere risolutiva per alcune malattie genetiche rare

Un gruppo di ricercatori del Children’s Hospital of Philadelphia (CHOP) e della Perelman School of Medicine dell’Università della Pennsylvania guidato dal dott. Avery C. Rossidis e dal dott. William H. Peranteau del CHOP ha pubblicato un articolo sulla rivista scientifica Nature Medicine  nel quale viene descritta nei dettagli la procedura di correzione del DNA di alcuni feti di topo usando uno specifico correttore (BE3, Base Editor 3) per trattare una rara e letale affezione genetica, la tirosinemia ereditaria di tipo 1 (HT1). 

CRISPR

L’FDA statunitense approva la domanda di Investigational New Drug sottoposta da Editas Medicine per il farmaco sperimentale EDIT-101, basato sulla tecnologia CRISPR

Ancora un’alleanza tra due società che si occupano di editing genomico. E ancora un successo. Mai come oggi l’adagio “l’unione fa la forza” si è dimostrato veritiero. Specialmente nella lotta alle malattie rare. Solo pochi giorni fa, Editas Medicine ha annunciato che la Food and Drug Administration (FDA) statunitense ha accolto la domanda presentata per il nuovo farmaco sperimentale (IND, Investigational New Drug) EDIT-101, un farmaco in fase di studio che sfrutta la tecnologia CRISPR per il trattamento dell’amaurosi congenita di Leber del tipo 10 (LCA10).

Un team di ricerca dell’Università di Harvard spera di usare la tecnica CRISPR per prevenire l’insorgenza della malattia di Alzheimer ma i dubbi e le controversie non mancano e, nel frattempo CRISPR migliora e aumenta la sua efficacia


Il tribunale dell’opinione pubblica è stato spietato con He Jiankui, il ricercatore cinese che a fine novembre annunciò di aver creato in laboratorio due gemelline dal patrimonio genetico modificato, e anche la comunità scientifica tutta ha preso ufficialmente le distanze da lui. Ciononostante, con l’eco dell’esperimento dello scandalo ancora forte nelle orecchie della popolazione, un ricercatore dell’Università di Harvard, ha affermato che quell’esperimento deve essere valutato – e compreso – a fondo prima di emettere un giudizio che possa abbattersi su tutti coloro che fanno ricorso a CRISPR-Cas9 nei loro protocolli di ricerca – autorizzati – all’interno dei laboratori non solo della Cina, ma di tutto il mondo.

Con il contributo incondizionato di

Website by Digitest.net



Questo sito utilizza cookies per il suo funzionamento Maggiori informazioni