Editing genomico: che cos'è e a cosa serve? Sarà la terapia del futuro?

L’editing genomico è una tecnologia altamente innovativa che funziona come un “correttore di bozze” del DNA: interviene in maniera precisa per trovare e correggere gli errori genetici all’interno dell’intero genoma. Molti considerano l’editing genomico come la terapia genica del futuro, visto che permetterebbe di correggere un gene difettoso direttamente là dove si trova senza doverne fornire una copia sana dall’esterno.

Una tecnica da Nobel: CRISPR

La vera rivoluzione in questo campo è arrivata nel 2012 con la scoperta del sistema Crispr-Cas9, che ha messo in secondo piano i sistemi di editing denominati nucleasi a dita zinco (zinc-finger nucleases), meganucleasi e TALEN che erano stati utilizzati fino ad allora dai ricercatori di tutto il mondo. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, espressione traducibile in italiano con brevi ripetizioni palindrome raggruppate e separate a intervalli regolari) ha dimostrato, fin da subito, una potenzialità e una versatilità fino a poco prima inimmaginabili: qualunque tipo di cellula vegetale, animale, inclusa quella umana, può essere modificata geneticamente e la correzione può avvenire anche per un singolo errore, e ovunque nel genoma. Inoltre, questa tecnica è facile da utilizzare, veloce ed economica, tutti fattori che contribuiscono ad ampliarne le potenzialità in ambito terapeutico. Una rivoluzione che ha premiato le sue scopritrici e autrici dell'ormai famoso studio pubblicato su Science nel 2012Emmanuelle Charpentier, Direttrice del Max Planck Unit for the Science of Pathogens a Berlino, e Jennifer A. Doudna, Professoressa all’University of California (Berkeley) - a vincere il Premio Nobel per la Chimica 2020 per lo “sviluppo di un metodo di editing genomico” basato su CRISPR.

CRISPR è l’acronimo di “Clustered Regularly Interspaced Short Palindromic Repeats”, ovvero sequenze geniche che si ripetono a intervalli regolari. A CRISPR sono associati i geni Cas ("CRISPR associated", da cui deriva "Crispr-Cas9") che codificano enzimi capaci di tagliare il DNA. Il DNA non viene tagliato in modo casuale, ma in un punto preciso grazie alla presenza di un RNA guida.

Questo sistema è stato originariamente scoperto nei batteri, nei quali agisce come arma di difesa contro i virus - un po' come il sistema immunitario umano - e funziona in maniera molto semplice ma con grande efficienza. Il sistema CRISPR si basa sulla combinazione di due elementi: un enzima Cas e un RNA guida che si appaia al DNA del virus per indicare a Cas il punto in cui tagliare. Come nel caso della terapia genica, anche la strategia di editing basata su CRISPR può essere somministrata in vivo (direttamente nell'organismo) o ex vivo (all'esterno, su cellule vive prelevate dell'organismo).

Ad oggi la ricerca nell’ambito dell’editing genomico spazia dalle malattie genetiche, in particolar modo quelle rare (come la distrofia muscolare di Duchenne, la beta-talassemia e la fibrosi cistica), ai tumori, passando per le malattie neurologiche (Alzheimer e Parkinson), fino alle malattie infettive (HIV). L’utilizzo di CRISPR è inoltre in studio nel campo degli xenotrapianti, in particolare degli organi suini, per la terapia di malattie umane.

Cellule staminali del sangue

Ricorrendo a Crispr-Cas9 i ricercatori hanno modificato un sottogruppo di staminali ematopoietiche per aumentare la produzione di emoglobina fetale. Questo approccio potrebbe rivelarsi importante per curare anemia falciforme e beta-talassemia

Si potrebbe quasi asserire che l’universo delle emoglobinopatie non abbia confini. Sebbene, infatti, patologie come la beta-talassemia o l’anemia falciforme siano monogeniche (originino cioè da mutazioni a danno di un unico gene) la complessità del loro quadro genetico è elevatissima. La cifra comune della beta-talassemia e dell’anemia falciforme è data dai disordini nella produzione di emoglobina, con tutte le complicazioni - ad esempio gravi anemie - che ciò comporta.
I tentativi di correggere il difetto che sta alla base di tali emoglobinopatie con l’editing genomico sono molti e alcuni fanno perno proprio sulla persistenza nell’organismo dell’emoglobina fetale, una versione dell’emoglobina prodotta dal feto e che, di norma, si esaurisce poco dopo la nascita. Tuttavia, quando essa continua ad essere prodotta in pazienti con anemia falciforme o beta-talassemia (si parla di persistenza ereditaria dell’emoglobina fetale) l’insieme dei sintomi delle due patologie si attenua.

Le tecniche di trasporto dei sistemi di editing hanno ancora dei limiti, ma i risultati potrebbero migliorare grazie all’utilizzo di nanocapsule sintetiche

Per modificare un gene, la tecnologia di editing Crispr-Cas9 deve essere consegnato all’interno della cellula in modo sicuro ed efficiente. Il metodo attualmente più diffuso si basa sui vettori virali, che da un lato sfrutta le utili caratteristiche tipiche dei virus di invasione e utilizzo della cellula per la produzione di nuove copie del materiale genetico contenuto al suo interno; dall’altro bisogna considerare le risposte immunitarie indesiderate e le problematiche relative alla consegna del carico in alcune specifiche cellule e tessuti. Un gruppo di ricercatori della University of Wisconsin-Madison ha cercato un’alternativa e sembrerebbe averla trovata in minuscole e personalizzabili nanocapsule sintetiche. Lo studio, pubblicato a settembre su Nature Nanotechnology, descrive questo innovativo mezzo di trasporto per il sistema binario di editing genomico, più precisamente per la nucleasi Cas9 e per l’RNA guida.

HIV virus

Dal paziente di Berlino a quello di Pechino. In Cina il primo trapianto di staminali modificate con editing genomico contro l’HIV.

Si tratta di un singolo paziente e non è neppure guarito. Ma in 19 mesi di osservazione non ha riportato effetti collaterali e vale la pena sottolineare che nessuno è mai stato seguito tanto a lungo dopo aver ricevuto un trattamento a base di CRISPR. Basta questo a fare di un giovane uomo cinese, sieropositivo e al tempo stesso colpito da leucemia linfoblastica acuta, un caso scientifico così interessante da approdare sul New England Journal of Medicine. Il paziente di Pechino non è stato così fortunato come il celebre paziente di Berlino, perché resta sieropositivo anche dopo l’infusione di staminali ematopoietiche manipolate con la tecnica di editing genomico per sbarrare la strada al virus dell’AIDS. Attraverso i dati pubblicati dal gruppo guidato da Hongkui Deng sembra comunque che la ricerca stia procedendo nella direzione giusta.

Visioni incontra

Il documentario “Human Nature” è stato proiettato a Milano lo scorso 12 settembre: consigliato per chi sa già tutto su CRISPR ma anche chi non ne sa proprio niente

“In principio doveva essere un documentario di venti minuti, ma poi, visto l’entusiasmo degli scienziati che abbiamo incontrato e poiché c’erano veramente tante cose da dire, abbiamo deciso di sviluppare un progetto più ampio: valeva la pena raccontare tutto con la correttezza scientifica ma comprensibile, perché riguarda tutti noi”. Così Meredith Desalazar, una delle produttrici del lungometraggio su CRISPR “Human Nature” , lo racconta dal palco del Teatro Litta di Milano, lo scorso 12 settembre, in occasione del Festival Internazionale del Documentario  “Visioni dal Mondo, Immagini dalla Realtà”. Centosette minuti, divisi in sette capitoli, per raccontare i punti di forza e i lati oscuri di questa tecnologia talmente rivoluzionaria che qualcuno ha paragonato all’avvento di internet o del pc portatile.

L’innovativa tecnica di modifica genetica può essere utilizzata per attivare materiali intelligenti in grado di somministrare farmaci ed effettuare diagnosi.

Semplice, economica e precisa, certo. Ma soprattutto versatile come nessun’altra tecnica di modificazione genetica concepita finora. La vocazione con cui è nata CRISPR è correggere i difetti genetici come se fossero dei refusi presenti nel DNA. Ma i ricercatori continuano a escogitare applicazioni innovative per le sue forbici molecolari, che sono riprogrammabili, accessoriabili, personalizzabili per ogni genere di esperimenti. L’ultima trovata sono gli idrogel intelligenti, capaci di cambiare forma a comando con un colpo di CRISPR. Questi biomateriali reattivi, presentati il 23 agosto su Science, potrebbero trovare molte applicazioni, in medicina e non solo, perché rispondono in modo tempestivo e specifico agli stimoli presenti nell’ambiente.

Anna Cereseto e il suo gruppo di ricerca

La ricerca si è svolta nei laboratori del CIBIO dell’Università di Trento ed è stata condotta su organoidi sviluppati a partire dalle cellule dei pazienti. Con importanti riscontri.

La fibrosi cistica è una malattia genetica causata dalle mutazioni nel gene CFTR (Cystic Fibrosis Transmembrane conductance Regulator) che codifica per la proteina omonima. La funzione di questa proteina è di regolare gli scambi idroelettrolitici e la sua alterazione comporta un'anomalia del trasporto dei sali. Questo determina, principalmente, la produzione di secrezioni "disidratate": il sudore è molto ricco in sodio e cloro, il muco è denso e vischioso e tende ad ostruire i dotti nei quali viene a trovarsi. Il problema principale è che le alterazioni genetiche che scatenano la patologia sono così tante da richiedere una classificazione a sé stante: da quelle che impediscono la produzione della proteina (classe I), e si associano ai casi più gravi, a quelle che implicano un’alterazione della conduzione ionica (classe IV), e determinano i fenotipi più lievi. Sul piano genetico la fibrosi cistica ha un’ampia variabilità e le manifestazioni respiratorie e gastrointestinali ne fanno la più diffusa malattia genetica con una prognosi severa. È per questo essenziale trovare presto una soluzione per correggere quante più mutazioni possibili al fine di ottenere una cura efficace per i pazienti.

Con il contributo incondizionato di

Website by Digitest.net



Questo sito utilizza cookies per il suo funzionamento Maggiori informazioni