Le terapie che hanno come bersaglio l'RNA, “RNA targeted therapies” in gergo scientifico, sono per lo più strategie basate su corte molecole di RNA o di DNA che agiscono modulando l’espressione dell’RNA messaggero (mRNA) mediante il meccanismo di “RNA interference” o di regolazione dello “splicing” (un processo di maturazione del mRNA).

L’RNA messaggero è la molecola addetta a veicolare le istruzioni contenute nel genoma per far si che siano trasformate nel prodotto finale funzionante: le proteine. Riuscire a modulare l’mRNA in maniera precisa ed efficace permette quindi di regolare l’espressione del prodotto di un gene senza cambiare il codice genetico originario. Differenziandosi così dalla terapia genica e dall’editing genomico che hanno l’obiettivo di correggere il difetto genetico agendo direttamente sul DNA.

Le corte molecole di RNA o di DNA, chiamate oligonucleotidi, agiscono riconoscendo e appaiandosi alla sequenza bersaglio dell’mRNA. L’effetto è di silenziare, ovvero spegnere, completamente il gene o modularne l’espressione in maniera più sottile. Nel primo caso si parla di RNA interference o di “silencing”: l’appaiamento con la molecola di RNA (chiamata “small interfering RNA” o siRNA) o di DNA (oligonucleotide antisenso) favorisce la degradazione dell’mRNA target prima che questo venga tradotto in proteina. Nel secondo caso, invece, la molecola antisenso (che può essere formata sia da RNA che da DNA) agisce in maniera più complessa andando ad interferire con lo splicing, il che può risultare in una modulazione dell’espressione della proteina o in un prodotto alternativo leggermente diverso dall’originale.

I vantaggi delle terapie che hanno come bersaglio l’RNA sono la reversibilità, poiché non viene modificato direttamente il DNA, la specificità con cui agiscono le molecole “interfering” o “antisenso” e la facilità con cui vengono disegnate e sintetizzate.

Agire sull’RNA aumenta in maniera considerevole il numero e la tipologia di target che possono essere bersagliati a scopi terapeutici. Infatti, è possibile disegnare molecole dirette contro sequenze di RNA che codificano per proteine strutturali o fattori di trascrizione, ma anche verso RNA non codificanti ma comunque coinvolti in processi fisiopatologici come i microRNA. Attualmente sono state sviluppate, o sono in via di sviluppo, terapie per malattie metaboliche, neuromuscolari e neurodegenerative, infettive, cardiovascolari e tumorali.

cellule tumorali

Sviluppato un sistema per far entrare in maniera efficace i farmaci a RNA nelle cellule tumorali. Lo studio della Lund University, in Svezia, è stato pubblicato su Nature Communications.

C’è una nuova classe di farmaci che sta emergendo per la potenzialità di curare malattie dovute a difetti genetici. Sono le terapie che hanno come bersaglio l’RNA, due delle quali sono già state approvate: una per la cura della amiloidosi ereditaria da transtiretina (hATTR) e l’altra per la porfiria epatica acuta. Altre, come quella per la sclerosi laterale amiotrofica (SLA), sono tuttora in fase di ricerca preclinica. C’è però una sfida, ancora in parte da affrontare, che riguarda la consegna delle molecole di RNA nelle cellule dove hanno effetto. Per superare questo problema i ricercatori della Lund University in Svezia hanno sviluppato un sistema che si è rivelato efficace anche per far arrivare i farmaci a RNA nei tumori.

Amiloidosi

Patisiran, la prima terapia basata su RNA interference approvata al mondo, è stata autorizzata da AIFA per il trattamento dei pazienti affetti da amiloidosi ereditaria da transtiretina (hATTR)

In questo periodo storico che stiamo vivendo tutto sembra essere dominato o aver a che fare con i virus. Per cui non sorprende che alle radici della scoperta che ha prima permesso di sviluppare una metodologia e poi di derivare da essa un farmaco contro l’amiloidosi hATTR ci siano comunque i virus. Si perché il meccanismo dell’RNA interference (o interferenza a RNA), su cui si basa il funzionamento di patisiran (con il nome commerciale Onpattro), il farmaco sviluppato da Alnylam Pharmaceuticals e approvato in Italia a inizio febbraio dall’AIFA per trattare i pazienti affetti da amiloidosi hATTR e con polineuropatia allo stadio 1 o 2, si sarebbe anticamente evoluto proprio per combattere le infezioni virali.

Sla

Il silenziamento genico di SOD1 ha impedito l'insorgenza della SLA in topi presintomatici e ne ha bloccato la progressione in quelli che avevano già sviluppato i primi sintomi

Se il nostro DNA è un enorme “libretto delle istruzioni” per le cellule, che in ogni momento devono attingere da queste informazioni per svolgere le proprie funzioni, basterebbe saltare “un’istruzione” sbagliata per evitare l’insorgere di una malattia causata da un difetto genico. È quello che ha provato a fare un gruppo di ricerca internazionale, guidato da Martin Marsala dell’University of California San Diego School of Medicine, che ha utilizzato una corta molecola di RNA, per silenziare il gene disfunzionale SOD1, causa di una forma genetica di sclerosi laterale amiotrofica (SLA). I test – condotti per ora solo su modelli animali – hanno portato alla prevenzione e al blocco (a seconda dello stadio della malattia) della degenerazione dei neuroni motori.

infografica givosiran

Il farmaco si basa su una strategia di RNA interference in grado di ridurre i livelli degli intermedi neurotossici dell’eme, causa degli attacchi della malattia.

Due anni e mezzo dopo aver ricevuto la designazione di terapia innovativa (Breakthrough Therapy) dalla Food and Drug Administration (FDA), givosiran, un farmaco basato sull’RNAi (RNA interference) sviluppato da Alnylam Pharmaceuticals, ha attenuto l’approvazione da parte dello stesso ente regolatorio statunitense. È indicato per il trattamento di pazienti adulti con porfiria epatica acuta, una malattia metabolica ereditaria, che porta all'accumulo di molecole tossiche dette porfirine, che si formano lungo la via di produzione dell’eme (complesso chimico che si trova nell’emoglobina e permette ai globuli rossi di legare l’ossigeno).

Grafica della sperimentazione di milasen

La terapia antisenso porta il nome della bambina affetta dalla grave malattia genetica. Un grande successo scientifico ma le considerazioni da fare sono molte

Milasen: un farmaco studiato, progettato e prodotto al Boston Children’s Hospital per una sola bambina al mondo, la piccola Mila Makovec, da cui deriva il nome del farmaco. Il processo per arrivare al farmaco è stato pubblicato lo scorso 9 ottobre su The New England Journal of Medicine e la notizia ha fatto rapidamente il giro del mondo. Ma di cosa si tratta esattamente?

Dopo un infarto, le cellule del muscolo cardiaco smettono di contrarsi, con conseguente scompenso cardiaco. L’azione di piccoli RNA potrebbero “risvegliarle”.

Un gruppo di ricerca internazionale, guidato da due italiani, ha individuato una terapia genica basata su un microRNA sintetico in grado di stimolare la rigenerazione cardiaca in seguito a infarto, permettendo la replicazione delle cellule muscolari del cuore e, di conseguenza, la riduzione del danno. Gli esperimenti sui modelli animali dureranno almeno 6 mesi e, nel caso funzionassero, si partirà con l'idea di pianificare uno studio clinico. In 3-5 anni si potrebbe pensare di riuscire ad avviare un primo trial clinico sull’uomo.

Con il contributo incondizionato di

Website by Digitest.net



Questo sito utilizza cookies per il suo funzionamento Maggiori informazioni