CHE COS'È UN ORGANOIDE?

Strutturalmente meno complessi di un organo, ma decisamente più rappresentativi di un ammasso di cellule disposte su una piastra da laboratorio. Gli organoidi sono definibili come aggregati di cellule che assumono spontaneamente una precisa conformazione tridimensionale, finendo con l’assomigliare a organi in miniatura. La capacità delle cellule che li compongono di organizzarsi e distribuirsi ordinatamente, ripercorrendo i passaggi più importanti del processo di organogenesi, li ha resi dei modelli cellulari in 3D impareggiabili per conseguire informazioni nuove sullo sviluppo dei vari organi e sulle interazioni tra i tessuti che li formano.

Grazie agli organoidi lo studio della biologia dello sviluppo è cambiata radicalmente dal momento che essi hanno permesso ai ricercatori di guardare ai processi di embriogenesi di organi come il cervello, il fegato o il pancreas in modo rivoluzionario. Pur essendo strutture piccole - non superano generalmente i pochi centimetri - gli organoidi possono essere formati da cellule prelevate direttamente dai pazienti e, pertanto, si configurano come elementi indispensabili per capire che cosa accade a un organo quando viene aggredito da una malattia come il cancro. Inoltre, i ricercatori stanno pensando di poterli sfruttare per valutare l’impatto in termini di tossicità di un nuovo farmaco sulla fisiologia dei vari organi e, pertanto, auspicano che gli organoidi diventano presto un anello utile nella catena di sviluppo di terapie mirate contro il cancro e molte altre patologie croniche o autoimmuni.

Lo studio degli organoidi è solo all’inizio e la ricerca biomedica ha già fatto molti progressi: sarà fondamentale comprendere i meccanismi per favorire una buona innervazione e vascolarizzazione di questi mini-organi, al fine di rendere sempre più realistiche le loro condizioni di sviluppo. Inoltre, occorre che il flusso dei fluidi e dell’ossigeno e le stimolazioni meccaniche a cui sono sottoposti ricordino quelle a cui sono soggetti gli organi originali. Tuttavia, il bagaglio nozionale desumibile da questi strabilianti modelli cellulari tridimensionali è molto maggiore - e molto più accurato - di quello dato dalle classiche colture in piastra. Per questo, non si può escludere che un domani gli organoidi possano svolgere un ruolo importante nel trapianto di organi interi.

LA BIOINGEGNERIA

Metodologie tipiche dell’elettronica, dell’informatica, della meccanica e della chimica per progettare soluzioni innovative al servizio delle scienze biomediche: la bioingegneria raccoglie al suo interno un mondo all'avanguardia che comprende sinapsi artificiali, organ-on-a-chip, stampa 3D e inchiostri biologici e molto altro ancora. È una disciplina giovane e opera in diversi ambiti per migliorare la conoscenza dei sistemi biologici e per sviluppare tecnologie e dispositivi per diagnosi, terapia, riabilitazione.

 

Stampa organi 3D

Un rivoluzionario sistema di stampa favorisce il passaggio di ossigeno e nutrienti anche in modelli d’organo complessi come polmone e fegato

Che la stampa 3D potesse calcare il palcoscenico della medicina rigenerativa era chiaro agli occhi di tutti ma che potesse giungere ad ottenere in tempi così rapidi una parte da protagonista non era esattamente scontato. Quello che, fino a pochi anni fa, poteva dare l’impressione di essere un hobby ingegneristico o un giochetto da nerd, è diventato un sofisticato strumento di ricerca dalle enormi potenzialità al quale i ricercatori di tutto il mondo guardano con profondo interesse. Una solida testimonianza di questo cambiamento di rotta proviene dai risultati di una ricerca israeliana che ha portato alla stampa 3D di un cuore a partire dalle cellule staminali del paziente.

Vasi sanguigni bioingegnerizzati pronti all’uso

Potranno essere usati su pazienti affetti da insufficienza renale o negli interventi di bypass coronarico. Senza rischi tossicologici o reazioni di rigetto.

Avete mai pensato al moschettone? In fondo si tratta solo di un anello di metallo dotato di una leva che ne permette l’apertura. Tuttavia, l’elenco dei suoi possibili utilizzi è talmente lungo che rischierebbe di monopolizzare questa pagina. Più o meno quello che accade con i vasi sanguigni. La loro funzione è vitale e le situazioni patologiche che ne rendono necessaria la sostituzione o la riparazione sono plurime – basti pensare alle patologie cardiovascolari e all’arteriosclerosi – ma vi siete mai chiesti come si “ripara” o con cosa si “sostituisce” un’arteria o una vena?
Nelle operazioni di bypass coronarico si usano tratti di vene o arterie dello stesso paziente (a volte presi dalla gamba o più spesso dal torace) per sostituire un vaso danneggiato. Ma se le condizioni cliniche del paziente non permettessero questo tipo di prelievo?

Kidney-on-a-Chip

Lo sviluppo di un farmaco richiede la sperimentazione in vitro e su modelli animali con grandi quantità di tempo e di denaro. La bioingegneria potrebbe offrire nuove soluzione.

Intestino, fegato, pelle e rene, tutti in miniatura e collegati tra loro come se fossero un mini-organismo, ma in formato tascabile. Quattro agglomerati cellulari tridimensionali collegati da canali microscopici che mimano il flusso sanguigno in vitro. Lo studio pubblicato nel 2015 sulla rivista Lab on a Chip aveva l’obiettivo di studiare la farmacocinetica dei farmaci seguendone l’assorbimento nell’intestino, il metabolismo a livello del fegato e l’escrezione dai reni, cosa che gli studi in vitro classici non possono fare. Il dispositivo è formato da agglomerati di cellule cresciute in piccole celle in grado di mimare la struttura e la fisiologia di diversi tessuti, con tanto di circolazione di microfluidi. Un’opportunità unica di modellare e studiare lo sviluppo e l’interazione tra gli organi, di testare la tossicità di sostanze chimiche e di valutare nuovi farmaci in laboratorio, ma su modelli idealmente molto vicini all’organismo umano.

L’organoide prodotto ha le stesse proprietà immunologiche, cellulari, biochimiche e anatomiche del paziente da cui è stato eseguito il prelievo

La stampa 3D per qualcuno è divenuta oltre che un simpatico passatempo anche un’opportunità di lavoro – artigiani ed orafi ne fanno uso corrente – e le sue applicazioni in campo medico sono sempre più interessanti. Una combinazione di sofisticati software per la scansione e l’elaborazione grafica, stampanti e materiali di ultima generazione ha portato a protesi più leggere, resistenti e ben tollerate dai pazienti. Ma un cuore stampato in 3D è tutt’altro paio di maniche. Innanzitutto si tratta di un organo con un funzionamento involontario dal significato cruciale, e poi solleva il problema della compatibilità immuno-istochimica con il soggetto ricevente.

Con il contributo incondizionato di

Website by Digitest.net



Questo sito utilizza cookies per il suo funzionamento Maggiori informazioni