Editing genomico: che cos'è e a cosa serve? Sarà la terapia del futuro?

L’editing genomico è una tecnologia altamente innovativa che funziona come un “correttore di bozze” del DNA: interviene in maniera precisa per trovare e correggere gli errori genetici all’interno dell’intero genoma. Molti considerano l’editing genomico come la terapia genica del futuro, visto che permetterebbe di correggere un gene difettoso direttamente là dove si trova senza doverne fornire una copia sana dall’esterno.

UNA TECNICA DA NOBEL: CRISPR

La vera rivoluzione in questo campo è arrivata nel 2012 con la scoperta del sistema Crispr-Cas9, che ha messo in secondo piano i sistemi di editing denominati nucleasi a dita zinco (zinc-finger nucleases), meganucleasi e TALEN che erano stati utilizzati fino ad allora dai ricercatori di tutto il mondo. CRISPR ha dimostrato, fin da subito, una potenzialità e una versatilità fino a poco prima inimmaginabili: qualunque tipo di cellula vegetale, animale, inclusa quella umana, può essere modificata geneticamente e la correzione può avvenire anche per un singolo errore, e ovunque nel genoma. Inoltre, questa tecnica è facile da utilizzare, veloce ed economica, tutti fattori che contribuiscono ad ampliarne le potenzialità in ambito terapeutico. Una rivoluzione che ha premiato le sue scopritrici e autrici dell'ormai famoso studio pubblicato su Science nel 2012Emmanuelle Charpentier, Direttrice del Max Planck Unit for the Science of Pathogens a Berlino, e Jennifer A. Doudna, Professoressa all’University of California (Berkeley) - a vincere il Premio Nobel per la Chimica 2020 per lo “sviluppo di un metodo di editing genomico” basato su CRISPR.

CRISPR è l’acronimo di “Clustered Regularly Interspaced Short Palindromic Repeats”, ovvero sequenze geniche che si ripetono a intervalli regolari. A CRISPR sono associati i geni Cas ("CRISPR associated", da cui deriva "Crispr-Cas9") che codificano enzimi capaci di tagliare il DNA. Il DNA non viene tagliato in modo casuale, ma in un punto preciso grazie alla presenza di un RNA guida.

Questo sistema è stato originariamente scoperto nei batteri, nei quali agisce come arma di difesa contro i virus - un po' come il sistema immunitario umano - e funziona in maniera molto semplice ma con grande efficienza. Il sistema CRISPR si basa sulla combinazione di due elementi: un enzima Cas e un RNA guida che si appaia al DNA del virus per indicare a Cas il punto in cui tagliare. Come nel caso della terapia genica, anche la strategia di editing basata su CRISPR può essere somministrata in vivo (direttamente nell'organismo) o ex vivo (all'esterno, su cellule vive prelevate dell'organismo).

Ad oggi la ricerca nell’ambito dell’editing genomico spazia dalle malattie genetiche, in particolar modo quelle rare (come la distrofia muscolare di Duchenne, la beta-talassemia e la fibrosi cistica), ai tumori, passando per le malattie neurologiche (Alzheimer e Parkinson), fino alle malattie infettive (HIV). L’utilizzo di CRISPR è inoltre in studio nel campo degli xenotrapianti, in particolare degli organi suini, per la terapia di malattie umane.

Editing genetico

Macro-delezioni, riarrangiamenti e perdita di un cromosoma: tre studi pubblicati su bioRxiv hanno descritto grossi problemi riguardo all’editing genomico sugli embrioni umani

La scienza non è fatta di dati e nozioni inconfutabili: man mano che la ricerca prosegue le informazioni cambiano, le tecniche migliorano e le scoperte fanno evolvere il sapere. Parlando di CRISPR, il rischio più discusso è da tempo quello delle mutazioni indesiderate cosiddette “off target”, cioè lontane dal sito di azione del meccanismo di editing. Studi più recenti hanno però evidenziato il rischio di grosse anomalie indesiderate vicino all’obiettivo. I dati, pubblicati su bioRxiv e non ancora sottoposti a peer review, hanno messo in guardia il mondo scientifico sulle possibili conseguenze dell’utilizzo della tecnica di editing genomico su embrioni umani.

Gruppo di ricerca del prof. Naldini

Un protocollo innovativo per potenziare l’efficacia e la sicurezza di questa tecnica e la sua applicazione alle cellule staminali del sangue: ne parliamo con il dott. Samuele Ferrari

Piccoli errori nel DNA possono essere responsabili di malattie genetiche più o meno gravi e, fino a qualche anno fa, correggere questi errori sembrava fantascienza. Ora, con l’avvento delle nuove tecniche di editing genetico e terapia genica, la medicina di precisione è protagonista di molte ricerche e le applicazioni cliniche stanno aumentando giorno dopo giorno. In uno studio pubblicato il 29 giugno su Nature Biotechnology, un gruppo di ricercatori dell’Istituto San Raffaele-Telethon per la terapia genica (SR-Tiget) guidato da Luigi Naldini è riuscito a superare un ostacolo all’applicazione dell’editing genetico alle cellule staminali ematopoietiche, bersaglio ideale nel caso di immunodeficienze primitive e altre patologie ereditarie che colpiscono le cellule del sangue.

CRISPR-iPSC-diabete

Uno studio preclinico, basato sull’utilizzo dell’editing genomico per modificare le iPSC, dà risultati incoraggianti per la sindrome di Wolfram, caratterizzata da diabete mellito

Una malattia neurodegenerativa che tra i sintomi annovera il diabete mellito di tipo I, l’atrofia ottica, il diabete insipido, deficit uditivi e segni neurologici. Questa è la sindrome di Wolfram (WFS), una malattia ultra-rara, di cui sono stati descritti circa 300 casi nel mondo, e attualmente senza cura. Ad oggi, il trattamento è sintomatico e prevede di tenere sotto controllo il diabete con iniezioni di insulina e di gestire al meglio gli altri disturbi correlati. Le terapie avanzate potrebbero essere d’aiuto: un gruppo di ricerca della Washington University School of Medicine (Stati Uniti) ha corretto una variante patogena del gene WFS1 in cellule staminali pluripotenti indotte (iPSC) che, una volta differenziate in cellule pancreatiche, hanno migliorato la secrezione di insulina in risposta ai livelli di glucosio.

Zanzara

La malattia che flagella l’Africa potrebbe essere sconfitta alterando con un “gene drive” basato su CRISPR il rapporto numerico tra i sessi degli insetti vettori

Il nome di Andrea Crisanti è noto ai più per il caso studio di Vo’ Euganeo e per la strategia di sorveglianza attiva che sta aiutando il Veneto ad arginare l’epidemia di COVID-19. Ma il medico romano è anche il pioniere di una tecnologia di frontiera per il controllo della malaria: il "gene drive". L’idea, sviluppata con il suo gruppo di ricerca dell’Imperial College di Londra e pubblicata l’11 maggio su Nature Biotechnology, consiste nel modificare le zanzare che trasmettono il plasmodio della malaria, appartenenti alla specie Anopheles gambiae, in modo tale da far nascere solo gli esemplari del sesso che non punge. Non essendoci abbastanza femmine per sostenere la riproduzione, le popolazioni di insetti vettori collasserebbero e si fermerebbe la trasmissione della malattia.

Editing genomico

Uno studio clinico, svolto in Cina, ha verificato la sicurezza di questo innovativo approccio di immunoterapia che potrebbe portare a un miglior controllo della malattia.

Modificare le cellule del sistema immunitario per renderle più forti contro i tumori, è una delle strategie più sfruttate negli ultimi decenni in oncologia. Ne sono un esempio le terapie CAR-T e l’immunoterapia basata sull’inibizione dei “checkpoint immunitari”, una sorta di “freno”, che quando attivato dal tumore paralizza le cellule T impedendogli di svolgere la loro funzione di difesa. Oggi l’immunoterapia sfrutta anticorpi per disinnescare questi freni. Un’altra soluzione è utilizzare sistemi di editing genomico, come CRISPR, per eliminare direttamente i checkpoint immunitari dalle cellule T. È quello che hanno testato i ricercatori della West China Hospital of Sichuan University, in Cina, in un trial clinico su un gruppo di pazienti con tumore polmonare metastatico non a piccole cellule.

Crispr test

La Food and Drug Administration (FDA) ha concesso la prima autorizzazione d’emergenza e la ricerca scommette su innovazioni ancora più ambiziose per la diagnosi delle malattie emergenti.

La pandemia ha dimostrato che i classici tamponi basati sulla reazione a catena della polimerasi (PCR) non bastano più. Rappresentano il golden standard della diagnostica ma richiedono reagenti difficili da reperire durante un’emergenza globale come questa, macchinari costosi, competenze specialistiche e troppo tempo per l’esecuzione. Il futuro del settore diagnostico è nei test rapidi, possibilmente da fare anche a casa e auspicabilmente in multiplex. A che punto è la transizione? La velocità è un requisito ormai a portata di mano, al traguardo dell’home-testing si sta lavorando e la fattibilità di chip capaci di eseguire simultaneamente centinaia di test diversi è già stata dimostrata in laboratorio.

Con il contributo incondizionato di

Website by Digitest.net



Questo sito utilizza cookies per il suo funzionamento Maggiori informazioni