L’editing genomico è una tecnologia altamente innovativa che funziona come un “correttore di bozze” del DNA: interviene in maniera precisa per trovare e correggere gli errori genetici all’interno dell’intero genoma. Molti considerano l’editing genomico come la terapia genica del futuro, visto che permetterebbe di correggere un gene difettoso direttamente là dove si trova senza doverne fornire una copia sana dall’esterno.
La vera rivoluzione in questo campo è arrivata nel 2012 con la scoperta del sistema Crispr-Cas9, che ha messo in secondo piano i sistemi di editing denominati nucleasi a dita zinco (zinc-finger nucleases), meganucleasi e TALEN che erano stati utilizzati fino ad allora dai ricercatori di tutto il mondo. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, espressione traducibile in italiano con brevi ripetizioni palindrome raggruppate e separate a intervalli regolari) ha dimostrato, fin da subito, una potenzialità e una versatilità fino a poco prima inimmaginabili: qualunque tipo di cellula vegetale, animale, inclusa quella umana, può essere modificata geneticamente e la correzione può avvenire anche per un singolo errore, e ovunque nel genoma. Inoltre, questa tecnica è facile da utilizzare, veloce ed economica, tutti fattori che contribuiscono ad ampliarne le potenzialità in ambito terapeutico. Una rivoluzione che ha premiato le sue scopritrici e autrici dell'ormai famoso studio pubblicato su Science nel 2012 - Emmanuelle Charpentier, Direttrice del Max Planck Unit for the Science of Pathogens a Berlino, e Jennifer A. Doudna, Professoressa all’University of California (Berkeley) - a vincere il Premio Nobel per la Chimica 2020 per lo “sviluppo di un metodo di editing genomico” basato su CRISPR.
CRISPR è l’acronimo di “Clustered Regularly Interspaced Short Palindromic Repeats”, ovvero sequenze geniche che si ripetono a intervalli regolari. A CRISPR sono associati i geni Cas ("CRISPR associated", da cui deriva "Crispr-Cas9") che codificano enzimi capaci di tagliare il DNA. Il DNA non viene tagliato in modo casuale, ma in un punto preciso grazie alla presenza di un RNA guida.
Questo sistema è stato originariamente scoperto nei batteri, nei quali agisce come arma di difesa contro i virus - un po' come il sistema immunitario umano - e funziona in maniera molto semplice ma con grande efficienza. Il sistema CRISPR si basa sulla combinazione di due elementi: un enzima Cas e un RNA guida che si appaia al DNA del virus per indicare a Cas il punto in cui tagliare. Come nel caso della terapia genica, anche la strategia di editing basata su CRISPR può essere somministrata in vivo (direttamente nell'organismo) o ex vivo (all'esterno, su cellule vive prelevate dell'organismo).
Ad oggi la ricerca nell’ambito dell’editing genomico spazia dalle malattie genetiche, in particolar modo quelle rare (come la distrofia muscolare di Duchenne, la beta-talassemia e la fibrosi cistica), ai tumori, passando per le malattie neurologiche (Alzheimer e Parkinson), fino alle malattie infettive (HIV). L’utilizzo di CRISPR è inoltre in studio nel campo degli xenotrapianti, in particolare degli organi suini, per la terapia di malattie umane.
Una malattia neurodegenerativa che tra i sintomi annovera il diabete mellito di tipo I, l’atrofia ottica, il diabete insipido, deficit uditivi e segni neurologici. Questa è la sindrome di Wolfram (WFS), una malattia ultra-rara, di cui sono stati descritti circa 300 casi nel mondo, e attualmente senza cura. Ad oggi, il trattamento è sintomatico e prevede di tenere sotto controllo il diabete con iniezioni di insulina e di gestire al meglio gli altri disturbi correlati. Le terapie avanzate potrebbero essere d’aiuto: un gruppo di ricerca della Washington University School of Medicine (Stati Uniti) ha corretto una variante patogena del gene WFS1 in cellule staminali pluripotenti indotte (iPSC) che, una volta differenziate in cellule pancreatiche, hanno migliorato la secrezione di insulina in risposta ai livelli di glucosio.
Il nome di Andrea Crisanti è noto ai più per il caso studio di Vo’ Euganeo e per la strategia di sorveglianza attiva che sta aiutando il Veneto ad arginare l’epidemia di COVID-19. Ma il medico romano è anche il pioniere di una tecnologia di frontiera per il controllo della malaria: il "gene drive". L’idea, sviluppata con il suo gruppo di ricerca dell’Imperial College di Londra e pubblicata l’11 maggio su Nature Biotechnology, consiste nel modificare le zanzare che trasmettono il plasmodio della malaria, appartenenti alla specie Anopheles gambiae, in modo tale da far nascere solo gli esemplari del sesso che non punge. Non essendoci abbastanza femmine per sostenere la riproduzione, le popolazioni di insetti vettori collasserebbero e si fermerebbe la trasmissione della malattia.
Modificare le cellule del sistema immunitario per renderle più forti contro i tumori, è una delle strategie più sfruttate negli ultimi decenni in oncologia. Ne sono un esempio le terapie CAR-T e l’immunoterapia basata sull’inibizione dei “checkpoint immunitari”, una sorta di “freno”, che quando attivato dal tumore paralizza le cellule T impedendogli di svolgere la loro funzione di difesa. Oggi l’immunoterapia sfrutta anticorpi per disinnescare questi freni. Un’altra soluzione è utilizzare sistemi di editing genomico, come CRISPR, per eliminare direttamente i checkpoint immunitari dalle cellule T. È quello che hanno testato i ricercatori della West China Hospital of Sichuan University, in Cina, in un trial clinico su un gruppo di pazienti con tumore polmonare metastatico non a piccole cellule.
La pandemia ha dimostrato che i classici tamponi basati sulla reazione a catena della polimerasi (PCR) non bastano più. Rappresentano il golden standard della diagnostica ma richiedono reagenti difficili da reperire durante un’emergenza globale come questa, macchinari costosi, competenze specialistiche e troppo tempo per l’esecuzione. Il futuro del settore diagnostico è nei test rapidi, possibilmente da fare anche a casa e auspicabilmente in multiplex. A che punto è la transizione? La velocità è un requisito ormai a portata di mano, al traguardo dell’home-testing si sta lavorando e la fattibilità di chip capaci di eseguire simultaneamente centinaia di test diversi è già stata dimostrata in laboratorio.
Nel trapianto di organi, le infezioni e il rigetto sono i rischi principali. Per diagnosticarli in tempi brevi e migliorare i risultati a lungo termine sono necessarie strategie innovative, efficienti, veloci e poco costose. CRISPR può rilevare DNA e RNA in diverse tipologie di campione con un’ottima sensibilità e specificità, rendendolo uno dei test possibili al “Point Of Care” (POC), cioè utilizzabile “presso il punto di assistenza” (ad esempio direttamente a casa del paziente). In questo caso è stata sperimentata la tecnica SHERLOCK, basata su Crispr-Cas13a, per la diagnosi precoce di infezioni e rigetto in pazienti che erano stati sottoposti a trapianto renale.
CRISPR ha rivoluzionato lo studio del genoma umano, ma a distanza di anni dalla sua scoperta è rimasta una sfida in sospeso: poter silenziare più geni – o più frammenti di essi – all’interno della cellula. Obiettivo dei ricercatori dell’Università di Toronto (Canada), guidati da Jason Moffat e Benjamin J. Blencow, era quello di scoprire come diversi geni interagiscano tra loro e come queste interazioni influenzino i processi fisiologici in condizioni normali e in condizioni patologiche. Per studiare le interazioni geniche, però, serviva uno strumento in grado di agire su più geni contemporaneamente, cosa che capita spesso nei casi di cancro e altre malattie. CHyMErA, di cui si è parlato a marzo su Nature Biotechnology, potrebbe essere la risposta a questa necessità.
Website by Digitest.net