L’editing genomico è una tecnologia altamente innovativa che funziona come un “correttore di bozze” del DNA: interviene in maniera precisa per trovare e correggere gli errori genetici all’interno dell’intero genoma. Molti considerano l’editing genomico come la terapia genica del futuro, visto che permetterebbe di correggere un gene difettoso direttamente là dove si trova senza doverne fornire una copia sana dall’esterno.
La vera rivoluzione in questo campo è arrivata nel 2012 con la scoperta del sistema Crispr-Cas9, che ha messo in secondo piano i sistemi di editing denominati nucleasi a dita zinco (zinc-finger nucleases), meganucleasi e TALEN che erano stati utilizzati fino ad allora dai ricercatori di tutto il mondo. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, espressione traducibile in italiano con brevi ripetizioni palindrome raggruppate e separate a intervalli regolari) ha dimostrato, fin da subito, una potenzialità e una versatilità fino a poco prima inimmaginabili: qualunque tipo di cellula vegetale, animale, inclusa quella umana, può essere modificata geneticamente e la correzione può avvenire anche per un singolo errore, e ovunque nel genoma. Inoltre, questa tecnica è facile da utilizzare, veloce ed economica, tutti fattori che contribuiscono ad ampliarne le potenzialità in ambito terapeutico. Una rivoluzione che ha premiato le sue scopritrici e autrici dell'ormai famoso studio pubblicato su Science nel 2012 - Emmanuelle Charpentier, Direttrice del Max Planck Unit for the Science of Pathogens a Berlino, e Jennifer A. Doudna, Professoressa all’University of California (Berkeley) - a vincere il Premio Nobel per la Chimica 2020 per lo “sviluppo di un metodo di editing genomico” basato su CRISPR.
CRISPR è l’acronimo di “Clustered Regularly Interspaced Short Palindromic Repeats”, ovvero sequenze geniche che si ripetono a intervalli regolari. A CRISPR sono associati i geni Cas ("CRISPR associated", da cui deriva "Crispr-Cas9") che codificano enzimi capaci di tagliare il DNA. Il DNA non viene tagliato in modo casuale, ma in un punto preciso grazie alla presenza di un RNA guida.
Questo sistema è stato originariamente scoperto nei batteri, nei quali agisce come arma di difesa contro i virus - un po' come il sistema immunitario umano - e funziona in maniera molto semplice ma con grande efficienza. Il sistema CRISPR si basa sulla combinazione di due elementi: un enzima Cas e un RNA guida che si appaia al DNA del virus per indicare a Cas il punto in cui tagliare. Come nel caso della terapia genica, anche la strategia di editing basata su CRISPR può essere somministrata in vivo (direttamente nell'organismo) o ex vivo (all'esterno, su cellule vive prelevate dell'organismo).
Ad oggi la ricerca nell’ambito dell’editing genomico spazia dalle malattie genetiche, in particolar modo quelle rare (come la distrofia muscolare di Duchenne, la beta-talassemia e la fibrosi cistica), ai tumori, passando per le malattie neurologiche (Alzheimer e Parkinson), fino alle malattie infettive (HIV). L’utilizzo di CRISPR è inoltre in studio nel campo degli xenotrapianti, in particolare degli organi suini, per la terapia di malattie umane.
La pandemia ha dimostrato che i classici tamponi basati sulla reazione a catena della polimerasi (PCR) non bastano più. Rappresentano il golden standard della diagnostica ma richiedono reagenti difficili da reperire durante un’emergenza globale come questa, macchinari costosi, competenze specialistiche e troppo tempo per l’esecuzione. Il futuro del settore diagnostico è nei test rapidi, possibilmente da fare anche a casa e auspicabilmente in multiplex. A che punto è la transizione? La velocità è un requisito ormai a portata di mano, al traguardo dell’home-testing si sta lavorando e la fattibilità di chip capaci di eseguire simultaneamente centinaia di test diversi è già stata dimostrata in laboratorio.
Nel trapianto di organi, le infezioni e il rigetto sono i rischi principali. Per diagnosticarli in tempi brevi e migliorare i risultati a lungo termine sono necessarie strategie innovative, efficienti, veloci e poco costose. CRISPR può rilevare DNA e RNA in diverse tipologie di campione con un’ottima sensibilità e specificità, rendendolo uno dei test possibili al “Point Of Care” (POC), cioè utilizzabile “presso il punto di assistenza” (ad esempio direttamente a casa del paziente). In questo caso è stata sperimentata la tecnica SHERLOCK, basata su Crispr-Cas13a, per la diagnosi precoce di infezioni e rigetto in pazienti che erano stati sottoposti a trapianto renale.
CRISPR ha rivoluzionato lo studio del genoma umano, ma a distanza di anni dalla sua scoperta è rimasta una sfida in sospeso: poter silenziare più geni – o più frammenti di essi – all’interno della cellula. Obiettivo dei ricercatori dell’Università di Toronto (Canada), guidati da Jason Moffat e Benjamin J. Blencow, era quello di scoprire come diversi geni interagiscano tra loro e come queste interazioni influenzino i processi fisiologici in condizioni normali e in condizioni patologiche. Per studiare le interazioni geniche, però, serviva uno strumento in grado di agire su più geni contemporaneamente, cosa che capita spesso nei casi di cancro e altre malattie. CHyMErA, di cui si è parlato a marzo su Nature Biotechnology, potrebbe essere la risposta a questa necessità.
L’emergenza COVID-19 ha evidenziato la mancanza di una tecnologia rapida, semplice e poco costosa per il rilevamento dei virus. Come se ciò non bastasse, non abbiamo ancora un farmaco disponibile per fronteggiare questa pandemia, di cui non siamo in grado di prevedere la durata. Gli studi clinici in corso sono molti e prendono in considerazione diverse molecole e soluzioni tecnologiche, ma ancora non è stato trovato qualcosa di specifico ed efficace. In questo quadro d’incertezza trova il suo spazio anche CRISPR, il famoso sistema di editing genomico che potrebbe essere utilizzato per contrastare direttamente il virus o come test diagnostico in grado di identificare la presenza dell’agente virale.
Prima di cominciare a leggere questo articolo è opportuno fare una precisazione: l’applicazione di tecniche editing del genoma per curare la malattia di Alzheimer è ancora lontana da essere una realtà ma è uno degli obiettivi che si sono poste le comunità di ricercatori, medici e pazienti. Dovrà passare ancora del tempo prima di riuscire a capire se gli strumenti di correzione del DNA come CRISPR sapranno fornire un aiuto prezioso in chiave terapeutica. Tuttavia, lo studio degli scienziati dell’Arizona State University pubblicato a febbraio sulla rivista Stem Cell Reports sembra offrire un punto di vista pionieristico su come l’evoluzione di tali strumenti possa dare un contributo alla ricerca contro questa terribile malattia neuro-degenerativa.
Per la prima volta la tecnica di editing genomico Crispr-Cas9 è stata utilizzata nel tentativo di correggere un gene direttamente nel corpo umano, evitando il processo classico che prevede il prelievo delle cellule, la loro modificazione e poi la reinfusione delle cellule corrette nel paziente. Editas Medicine e Allergan hanno annunciato il trattamento di un paziente affetto dall’amaurosi congenita di Leber di tipo 10 (LCA10) con la terapia sperimentale EDIT-101. Circa un anno fa, la Food and Drug Administration aveva approvato la domanda di Investigational New Drug per questo farmaco basato su CRISPR. Ad oggi la LCA10 è l’unica malattia genetica dell’infanzia per la quale è stata recuperata la visione in modello animale e, dato che alcune forme sono causate da mutazioni in un solo gene, è candidata ideale per l’editing genomico con Crispr-Cas9.
Website by Digitest.net